Biomass Stock, Net Primary Productivity and Radiation Use Efficiency of 11 conifer species growing on a gradient of water availability in the Pacific North West of the U.S.A.

Erkan BABAT*, M.S. Graduate Student, Department of Forest Engineering, Resources & Management Carlos Gonzalez-Benecke, Assistant Professor, Sustainable Forest management, Oregon State University *Email: babate@oregonstate.edu

Background

- The increase in frequency and intensity of • 3 STUDY SITES PLANTED IN 1996-1997. 0.5 ACRE PLOT SIZE disturbances associated with climate change SITES COVER A RANGE IN RAINFALL – WATER/DEFICIT (such as diseases like Swiss needle cast on • 11 SPECIESTESTED IN EACH SITES (List all species). the Oregon coast). Because of this disease, • IN WINTER 2021 AND 2022: MEASURE DBH AND HT severe defoliation and growth losses of 20 to COLLECT LITTERFALL (BI-MONTHLY): 5 TRAPS PER PLOT 50 percent. • TOTAL ABOVE-GROUND BIOMASS WILL BE CALCULATED USING PUBLISHED **BIOMASS FUNCTIONS AND INVENTORY DATA.** Forests Inc. in three locations that span a LAI WILL BE ESTIMATED BI-MONTHLY USING A CEPTOMETER range of water availability in Western Oregon • WEATHER STATION (GLOBAL RAD, TEMP, RH, RAINFALL) INSTALLED IN MARCH in 1996. There are eleven plots, and each 2021 plot was created as a single species. _____ DF●...... GF
- 11 species of trees were planted by Starker Plots were never measured previously. ------- GS
- Carbon sequestration explain long-term storage of CO2 or other forms of carbon to either mitigate or defer global warming and avoid dangerous climate change.

Research Objectives

- 1. Compare aboveground biomass across species and sites
- aboveground 2. Compare net primary productivity (NPP) across species and sites
- 3. Compare leaf area index and growth efficiency across species and sites
- 4. Correlate environmental factors with stand productivity

Research Questions

- 1. Which species is more productive?
- 2. Is there a species x environment interaction on stand productivity and growth efficiency?

Hypotheses

1. Stand productivity and growth efficiency are different across species and environmental factors affect each species differently.

Methodology

DF	Douglas-fir
POC	Port-Orford-Cedar
JL	Japanese Larch
WVPP	Willamette Valley Ponderosa Pine
GS	Giant Sequoia
WWP	Western White Pine (Blister Rust Resistant
SSP	Sitka Spruce
WRC	Western Red-Cedar
WH	Western Hemlock
LC	Leland Cypress
GF	Grand Fir
WRSP	Sitka Spruce (Weevil Resistant)

Site

Scope of inference

Inferences are limited

to the eleven conifer species and study area, but results will provide information about the differences between the three sites in Western Oregon.

Significance

By quantifying LAI, biomass stock and NPP in three different sites will give a significant opportunity to understand adaptability and growth potential of alternative species in the western Oregon.

References

Stone, Jeffrey K., Coop, Leonard B., and Manter Daniel K. A Spatial Model for Predicting Effects of Climate Change on Swiss Needle Cast Disease Severity in Pacific Northwest Forests

https://www.fs.fed.us/pnw/pubs/gtr802/Vol <u>1/pnw_gtr802vol1_stone.pdf</u>. 04/08/2021.

Acknowledgements

The research is funded by the Turkish Ministry of Education, Starker Forests Inc. and Oregon State University.

STARKER FORESTS, INC. University

